Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Neurol Neurosurg Psychiatry ; 93(12): 1343-1348, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2038335

ABSTRACT

BACKGROUND: To assess whether SARS-CoV-2 infection may affect the central nervous system, specifically neurons and glia cells, even without clinical neurological involvement. METHODS: In this single centre prospective study, serum levels of neurofilament light chain (sNfL) and glial fibrillar acidic protein (sGFAp) were assessed using SimoaTM assay Neurology 2-Plex B Assay Kit, in 148 hospitalised patients with COVID-19 without clinical neurological manifestations and compared them to 53 patients with interstitial pulmonary fibrosis (IPF) and 108 healthy controls (HCs). RESULTS: Age and sex-corrected sNfL levels were higher in patients with COVID-19 (median log10-sNfL 1.41; IQR 1.04-1.83) than patients with IPF (median log10-sNfL 1.18; IQR 0.98-1.38; p<0.001) and HCs (median log10-sNfL 0.89; IQR 0.72-1.14; p<0.001). Likewise, age and sex-corrected sGFAP levels were higher in patients with COVID-19 (median log10-sGFAP 2.26; IQR 2.02-2.53) in comparison with patients with IPF (median log10-sGFAP 2.15; IQR 1.94-2.30; p<0.001) and HCs (median log10-sGFAP 1.87; IQR 0.64-2.09; p<0.001). No significant difference was found between patients with HCs and IPF (p=0.388 for sNfL and p=0.251 for sGFAp). In patients with COVID-19, a prognostic model with mortality as dependent variable (26/148 patients died during hospitalisation) and sNfl, sGFAp and age as independent variables, showed an area under curve of 0.72 (95% CI 0.59 to 0.84; negative predictive value (NPV) (%):80,positive predictive value (PPV)(%): 84; p=0.0008). CONCLUSION: The results of our study suggest that neuronal and glial degeneration can occur in patients with COVID-19 regardless of overt clinical neurological manifestations. With age, levels of sNfl and GFAp can predict in-hospital COVID-19-associated mortality and might be useful to assess COVID-19 patient prognostic profile.


Subject(s)
Brain , COVID-19 , Neuroglia , Neurons , Humans , Biomarkers/blood , Brain/pathology , Brain/virology , COVID-19/mortality , COVID-19/pathology , Neurofilament Proteins/blood , Neuroglia/pathology , Neuroglia/virology , Neurons/pathology , Neurons/virology , Prospective Studies , SARS-CoV-2 , Male , Female , Prognosis
2.
Stem Cell Reports ; 16(5): 1156-1164, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1225409

ABSTRACT

Coronavirus disease 2019 (COVID-19) patients have manifested a variety of neurological complications, and there is still much to reveal regarding the neurotropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human stem cell-derived brain organoids offer a valuable in vitro approach to study the cellular effects of SARS-CoV-2 on the brain. Here we used human embryonic stem cell-derived cortical organoids to investigate whether SARS-CoV-2 could infect brain tissue in vitro and found that cortical organoids could be infected at low viral titers and within 6 h. Importantly, we show that glial cells and cells of the choroid plexus were preferentially targeted in our model, but not neurons. Interestingly, we also found expression of angiotensin-converting enzyme 2 in SARS-CoV-2 infected cells; however, viral replication and cell death involving DNA fragmentation does not occur. We believe that our model is a tractable platform to study the cellular effects of SARS-CoV-2 infection in brain tissue.


Subject(s)
COVID-19/pathology , Choroid Plexus/pathology , Human Embryonic Stem Cells/cytology , Neuroglia/virology , Organoids/innervation , Organoids/pathology , Cells, Cultured , Choroid Plexus/cytology , Choroid Plexus/virology , Humans , Neuroglia/pathology , Neurons/virology , Organoids/cytology , SARS-CoV-2/pathogenicity
3.
J Med Virol ; 93(4): 1983-1998, 2021 04.
Article in English | MEDLINE | ID: covidwho-1217384

ABSTRACT

Patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection manifest mainly respiratory symptoms. However, clinical observations frequently identified neurological symptoms and neuropsychiatric disorders related to COVID-19 (Neuro-SARS2). Accumulated robust evidence indicates that Neuro-SARS2 may play an important role in aggravating the disease severity and mortality. Understanding the neuropathogenesis and cellular mechanisms underlying Neuro-SARS2 is crucial for both basic research and clinical practice to establish effective strategies for early detection/diagnosis, prevention, and treatment. In this review, we comprehensively examine current evidence of SARS-CoV-2 infection in various neural cells including neurons, microglia/macrophages, astrocytes, pericytes/endothelial cells, ependymocytes/choroid epithelial cells, and neural stem/progenitor cells. Although significant progress has been made in studying Neuro-SARS2, much remains to be learned about the neuroinvasive routes (transneuronal and hematogenous) of the virus and the cellular/molecular mechanisms underlying the development/progression of this disease. Future and ongoing studies require the establishment of more clinically relevant and suitable neural cell models using human induced pluripotent stem cells, brain organoids, and postmortem specimens.


Subject(s)
Brain/virology , COVID-19/pathology , Nervous System Diseases/virology , Neuroglia/virology , Neurons/virology , Animals , Brain/pathology , Cell Line , Humans , Nervous System Diseases/pathology , Neural Stem Cells , Neuroglia/pathology , Neurons/pathology
4.
Mol Neurobiol ; 57(12): 5263-5275, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-738570

ABSTRACT

Similar to its predecessors, coronavirus disease 2019 (COVID-19) exhibits neurotrophic properties, which lead to progression of neurologic sequelae. Besides direct viral invasion to the central nervous system (CNS), indirect CNS involvement through viral-mediated immune response is plausible. Aberrant immune pathways such as extreme release of cytokines (cytokine storm), autoimmunity mediated by cross-reactivity between CNS components and viral particles, and microglial activation propagate CNS damage in these patients. Here, we review the currently available evidence to discuss the plausible immunologic pathways that may contribute to the development of COVID-19 neurological complications, namely Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, Guillain-Barre syndrome, seizure, and brainstem involvement.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Nervous System Diseases/etiology , Pandemics , Pneumonia, Viral/complications , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , Brain Stem/physiopathology , Brain Stem/virology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytopathogenic Effect, Viral , Disease Outbreaks , Guillain-Barre Syndrome/etiology , Guillain-Barre Syndrome/immunology , Humans , Mice , Multiple Sclerosis/etiology , Multiple Sclerosis/immunology , Nerve Tissue Proteins/physiology , Nervous System Diseases/immunology , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/immunology , Neuroglia/pathology , Neuroglia/virology , Neurons/pathology , Neurons/virology , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/immunology , Receptors, Virus/physiology , Respiratory Insufficiency/etiology , Respiratory Insufficiency/physiopathology , SARS-CoV-2 , Seizures/etiology , Seizures/immunology , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/epidemiology , Stroke/etiology , Stroke/immunology
SELECTION OF CITATIONS
SEARCH DETAIL